Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.599
Filtrar
1.
Dev Cell ; 57(2): 228-245.e6, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35016014

RESUMO

Although overwhelming plasma membrane integrity loss leads to cell lysis and necrosis, cells can tolerate a limited level of plasma membrane damage, undergo ESCRT-III-mediated repair, and survive. Here, we find that cells which undergo limited plasma membrane damage from the pore-forming actions of MLKL, GSDMD, perforin, or detergents experience local activation of PKCs through Ca2+ influx at the damage sites. S660-phosphorylated PKCs subsequently activate the TAK1/IKKs axis and RelA/Cux1 complex to trigger chemokine expressions. We observe that in late-stage cancers, cells with active MLKL show expression of CXCL8. Similar expression induction is also found in ischemia-injured kidneys. Chemokines generated in this manner are also indispensable for recruiting immune cells to the dead and dying cells. This plasma membrane integrity-sensing pathway is similar to the well-established yeast cell wall integrity signaling pathway at molecular level, and this suggests an evolutionary conserved mechanism to respond to the cellular barrier damage.


Assuntos
Membrana Celular/metabolismo , Quimiocinas/fisiologia , Proteína Quinase C/fisiologia , Animais , Apoptose/fisiologia , Membrana Celular/fisiologia , Quimiocinas/genética , Quimiocinas/imunologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Transdução de Sinais
2.
Neuroscience ; 497: 97-106, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34968669

RESUMO

Fear memories allow animals to recognize and adequately respond to dangerous situations. The prelimbic cortex (PrL) is a crucial node in the circuitry that encodes contextual fear memory, and its activity is central for fear memory expression over time. However, while PrL has been implicated in contextual fear memory storage, the molecular mechanisms underlying its maintenance remain unclear. Protein kinase M zeta (PKMζ) is a persistently active enzyme which has been shown to maintain many forms of memories by inhibiting the endocytosis of GluA2-containing AMPA receptors. Therefore, we hypothesized that PKMζ action upon GluA2-containing AMPARs could be a mechanism for contextual fear memory maintenance in the PrL. To test this hypothesis, we trained rats in a contextual fear conditioning (CFC) paradigm and administered intra-PrL infusions of the PKMζ inhibitor ZIP, the GluA2-dependent endocytosis inhibitor GluA23Y or the inactive peptide GluA23Y(s), either two or twenty days after conditioning, and assessed long-term memory retention twenty-four hours later. We found that acute inhibition of GluA2-dependent AMPAR endocytosis in the PrL does not affect recent or remote contextual fear memory maintenance. Also, PKMζ inhibition in the PrL does not impair the maintenance of recent contextual fear memory. However, we found that inhibition of prelimbic PKMζ at a remote time point disrupts contextual fear memory maintenance, and that blocking GluA2-dependent removal of AMPARs prevents this impairment. Our results confirm the central role of PrL in fear memory and identify PKMζ-induced inhibition of GluA2-containing AMPAR endocytosis as a key mechanism governing remote contextual fear memory maintenance.


Assuntos
Medo , Memória de Longo Prazo , Memória , Proteína Quinase C , Receptores de AMPA , Animais , Endocitose/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Memória de Longo Prazo/fisiologia , Proteína Quinase C/fisiologia , Ratos , Receptores de AMPA/fisiologia
3.
Mol Pharm ; 18(12): 4322-4330, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34734526

RESUMO

Parathyroid hormone-related protein (PTHrP), which is secreted from a tumor, contributes to the progression of cachexia, a condition that is observed in half of all cancer patients. Although drug clearance was reported to decrease in patients with cancer cachexia, the details have not been clarified. The present study reports on an investigation of whether PTHrP is involved in the alternation of drug metabolism in cases of cancer cachexia. Cancer cachexia model rats with elevated serum PTHrP levels showed a significant decrease in hepatic and intestinal CYP3A2 protein expression. When midazolam, a CYP3A substrate drug, was administered intravenously or orally to the cancer cachexia rats, its area under the curve (AUC) was increased by about 2 and 5 times, as compared to the control group. Accordingly, the bioavailability of midazolam was increased by about 3 times, thus enhancing its pharmacological effect. In vitro experiments using HepG2 cells and Caco-2 cells showed that the addition of serum from cancer cachexia rats or active PTHrP (1-34) to each cell resulted in a significant decrease in the expression of CYP3A4 mRNA. Treatment with a cell-permeable cAMP analog also resulted in a decreased CYP3A4 expression. Pretreatment with protein kinase A (PKA), protein kinase C (PKC), and nuclear factor-kappa B (NF-κB) inhibitors recovered the decrease in CYP3A4 expression that was induced by PTHrP (1-34). These results suggest that PTHrP suppresses CYP3A expression via the cAMP/PKA/PKC/NF-κB pathway. Therefore, it is likely that PTHrP would be involved in the changes in drug metabolism observed in cancer cachexia.


Assuntos
Caquexia/metabolismo , Citocromo P-450 CYP3A/genética , Neoplasias/complicações , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Animais , Células CACO-2 , Células Hep G2 , Humanos , Fígado/enzimologia , Masculino , Midazolam/farmacocinética , NF-kappa B/fisiologia , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Cell Rep ; 37(8): 110054, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818553

RESUMO

We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/classificação , Humanos , Isoenzimas/genética , Camundongos , Oncogenes/genética , Proteína Quinase C/genética , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia
5.
Neurotox Res ; 39(6): 2042-2055, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499332

RESUMO

Aluminum is a widespread environmental neurotoxicant that can induce Alzheimer's disease (AD)-like damage, such as neuronal injury and impairment of learning and memory. Several studies have shown that aluminum could reduce the synaptic plasticity, but its molecular mechanism remains unclear. In this study, rats were treated with aluminum maltol (Al(mal)3) to establish a toxic animal model and PMA was used to interfere with the expression of PKC. The Morris water maze and open field test were used to investigate the behavioral changes of the rats. Western blotting and RT-PCR were used to detect the expression levels of NMDAR subunits, PKC and CaMKII. The results showed that Al(mal)3 damaged learning and memory function and reduced anxiety in rats. During this process, the expression of PKC was downregulated and it inhibited the expression of NMDARs through the phosphorylation of CaMKII.


Assuntos
Alumínio/toxicidade , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Western Blotting , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de N-Metil-D-Aspartato/fisiologia
6.
Mol Brain ; 14(1): 140, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526080

RESUMO

Previous studies have demonstrated that brain-derived neurotrophic factor (BDNF) is one of the diffusible messengers for enhancing synaptic transmission in the hippocampus. Less information is available about the possible roles of BDNF in the anterior cingulate cortex (ACC). In the present study, we used 64-electrode array field recording system to investigate the effect of BDNF on ACC excitatory transmission. We found that BDNF enhanced synaptic responses in a dose-dependent manner in the ACC in C57/BL6 mice. The enhancement was long-lasting, and persisted for at least 3 h. In addition to the enhancement, BDNF also recruited inactive synaptic responses in the ACC. Bath application of the tropomyosin receptor kinase B (TrkB) receptor antagonist K252a blocked BDNF-induced enhancement. L-type voltage-gated calcium channels (L-VGCC), metabotropic glutamate receptors (mGluRs), but not NMDA receptors were required for BDNF-produced enhancement. Moreover, calcium-stimulated adenylyl cyclase subtype 1 (AC1) but not AC8 was essential for the enhancement. A selective AC1 inhibitor NB001 completely blocked the enhancement. Furthermore, BDNF-produced enhancement occluded theta burst stimulation (TBS) induced long-term potentiation (LTP), suggesting that they may share similar signaling mechanisms. Finally, the expression of BDNF-induced enhancement depends on postsynaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) and protein kinase Mζ (PKMζ). Our results demonstrate that cortical BDNF may contribute to synaptic potentiation in the ACC.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Adenilil Ciclases/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Carbazóis/farmacologia , Relação Dose-Resposta a Droga , Eletrodos Implantados , Alcaloides Indólicos/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/fisiologia , Receptores de AMPA/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Ritmo Teta/efeitos dos fármacos
7.
Cancer Lett ; 523: 57-71, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34563641

RESUMO

High fluence low-level laser (HF-LLL), a mitochondria-targeted tumour phototherapy, results in oxidative damage and apoptosis of tumour cells, as well as damage to normal tissue. To circumvent this, the therapeutic effect of low fluence LLL (LFL), a non-invasive and drug-free therapeutic strategy, was identified for tumours and the underlying molecular mechanisms were investigated. We observed that LFL enhanced antigen-specific immune response of macrophages and dendritic cells by upregulating MHC class II, which was induced by mitochondrial reactive oxygen species (ROS)-activated signalling, suppressing tumour growth in both CD11c-DTR and C57BL/6 mice. Mechanistically, LFL upregulated MHC class II in an MHC class II transactivator (CIITA)-dependent manner. LFL-activated protein kinase C (PKC) promoted the nuclear translocation of CIITA, as inhibition of PKC attenuated the DNA-binding efficiency of CIITA to MHC class II promoter. CIITA mRNA and protein expression also improved after LFL treatment, characterised by direct binding of Src and STAT1, and subsequent activation of STAT1. Notably, scavenging of ROS downregulated LFL-induced Src and PKC activation and antagonised the effects of LFL treatment. Thus, LFL treatment altered the adaptive immune response via the mitochondrial ROS-activated signalling pathway to control the progress of neoplastic disease.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Terapia com Luz de Baixa Intensidade/métodos , Neoplasias Experimentais/terapia , Proteína Quinase C/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Quinases da Família src/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Apresentação de Antígeno , Células Dendríticas/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/fisiologia , Fator de Transcrição STAT1/fisiologia , Transativadores/fisiologia
8.
J Neurochem ; 159(1): 116-127, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34320222

RESUMO

Methcathinone (MCAT) is a psychostimulant of abuse that can cause both persistent striatal dopaminergic and serotonergic, as well as hippocampal serotonergic, deficits. Evidence suggests that the rapid effects of stimulants that are structurally and mechanistically similar to MCAT on monoamine transporter function may contribute to the abuse liability and/or persistent monoaminergic deficits caused by these agents. Thus, effects of MCAT on 1) striatal dopamine (DA) transporter (DAT); and 2) striatal and hippocampal serotonin transporter (SERT) function, as determined in tissues from adult male rats, were assessed. As reported previously, a single administration of MCAT rapidly (within 1 hr) decreases striatal [3 H]DA uptake. Similarly, incubation of rat synaptosomes with MCAT at 37℃ (but not 4˚C) decreased striatal [3 H]DA uptake. Incubation with MCAT likewise decreased [3 H]5HT but not vesicular [3 H]DA uptake. MCAT incubation in vitro was without effect on [3 H]DA uptake in striatal synaptosomes prepared from MCAT-treated rats. The decrease in [3 H]DA uptake caused by MCAT incubation: (a) reflected a decrease in Vmax , with minimal change in Km , and (b) was attenuated by co-incubation with the cell-permeable calcium chelator, N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]-1,1'-bis[(acetyloxy)methyl] ester-glycine (BAPTA-AM), as well as the non-selective protein kinase-C (PKC) inhibitors bisindolylmaleimide-1 (BIM-1) and 2-[1-3(Aminopropyl)indol-3-yl]-3(1-methyl-1H-indol-3-yl)maleimide (or Bisindolylmaleimide VIII; Ro-31-7549). Taken together, these results suggest that in vitro MCAT incubation may model important aspects of MCAT administration in vivo, and that calcium and PKC contribute to the in vitro effects of MCAT on DAT.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Propiofenonas/farmacologia , Proteína Quinase C/fisiologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/fisiologia
9.
Commun Biol ; 4(1): 780, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168243

RESUMO

Breast cancer stem cells (BCSCs) are essential for cancer growth, metastasis and recurrence. The regulatory mechanisms of BCSC interactions with the vascular niche within the tumor microenvironment (TME) and their self-renewal are currently under extensive investigation. We have demonstrated the existence of an arteriolar niche in the TME of human BC tissues. Intriguingly, BCSCs tend to be enriched within the arteriolar niche in human estrogen receptor positive (ER+) BC and bi-directionally interact with arteriolar endothelial cells (ECs). Mechanistically, this interaction is driven by the lysophosphatidic acid (LPA)/protein kinase D (PKD-1) signaling pathway, which promotes both arteriolar differentiation of ECs and self-renewal of CSCs likely via differential regulation of CD36 transcription. This study indicates that CSCs may enjoy blood perfusion to maintain their stemness features. Targeting the LPA/PKD-1 -CD36 signaling pathway may have therapeutic potential to curb tumor progression by disrupting the arteriolar niche and effectively eliminating CSCs.


Assuntos
Neoplasias da Mama/patologia , Lisofosfolipídeos/fisiologia , Células-Tronco Neoplásicas/fisiologia , Proteína Quinase C/fisiologia , Nicho de Células-Tronco/fisiologia , Antígenos CD36/análise , Comunicação Celular , Diferenciação Celular , Células Endoteliais/citologia , Feminino , Humanos , Proteína Quinase C/análise , Transdução de Sinais/fisiologia , Microambiente Tumoral
10.
Sci Rep ; 11(1): 10956, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040090

RESUMO

Triple-negative breast cancer (TNBC) is a highly malignant type of breast cancer and lacks effective therapy. Targeting cysteine-dependence is an emerging strategy to treat the mesenchymal TNBC. However, many TNBC cells are non-mesenchymal and unresponsive to cysteine deprivation. To overcome such resistance, three selective HDAC6 inhibitors (Tubacin, CAY10603, and Tubastatin A), identified by epigenetic compound library screening, can synergize with cysteine deprivation to induce cell death in the non-mesenchymal TNBC. Despite the efficacy of HDAC6 inhibitor, knockout of HDAC6 did not mimic the synthetic lethality induced by its inhibitors, indicating that HDAC6 is not the actual target of HDAC6 inhibitor in this context. Instead, transcriptomic profiling showed that tubacin triggers an extensive gene transcriptional program in combination with erastin, a cysteine transport blocker. Notably, the zinc-related gene response along with an increase of labile zinc was induced in cells by the combination treatment. The disturbance of zinc homeostasis was driven by PKCγ activation, which revealed that the PKCγ signaling pathway is required for HDAC6 inhibitor-mediated synthetic lethality. Overall, our study identifies a novel function of HDAC6 inhibitors that function as potent sensitizers of cysteine deprivation and are capable of abolishing cysteine-independence in non-mesenchymal TNBC.


Assuntos
Anilidas/farmacologia , Carbamatos/farmacologia , Cisteína/fisiologia , Células Epiteliais/efeitos dos fármacos , Desacetilase 6 de Histona/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Proteínas de Neoplasias/fisiologia , Oxazóis/farmacologia , Transcrição Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisteína/administração & dosagem , Cisteína/deficiência , Ativação Enzimática/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Desacetilase 6 de Histona/genética , Homeostase , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Piperazinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/fisiologia , Bibliotecas de Moléculas Pequenas , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia , Zinco/metabolismo
11.
J Neurosci ; 41(18): 3948-3957, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33789918

RESUMO

Drosophila odorant receptors (Ors) are ligand gated ion channels composed of a common receptor subunit Or co-receptor (ORCO) and one of 62 "tuning" receptor subunits that confer odorant specificity to olfactory neuron responses. Like other sensory systems studied to date, exposing Drosophila olfactory neurons to activating ligands results in reduced responses to subsequent exposures through a process called desensitization. We recently showed that phosphorylation of serine 289 on the common Or subunit ORCO is required for normal peak olfactory neuron responses. Dephosphorylation of this residue occurs on prolonged odorant exposure, and underlies the slow modulation of olfactory neuron responses we term "slow desensitization." Slow desensitization results in the reduction of peak olfactory neuron responses and flattening of dose-response curves, implicating changes in ORCOS289 phosphorylation state as an important modulator of olfactory neuron responses. Here, we report the identification of the primary kinase responsible for ORCOS289 phosphorylation, PKC98E. Antiserum localizes the kinase to the dendrites of the olfactory neurons. Deletion of the kinase from olfactory neurons in the naive state (the absence of prolonged odor exposure) reduces ORCOS289 phosphorylation and reduces peak odorant responses without altering receptor localization or expression levels. Genetic rescue with a PKC98E predicted to be constitutively active restores ORCO S289 phosphorylation and olfactory neuron sensitivity to the PKC98E mutants in the naive state. However, the dominant kinase is defective for slow desensitization. Together, these findings reveal that PKC98E is an important regulator of ORCO receptors and olfactory neuron function.SIGNIFICANCE STATEMENT We have identified PKC98E as the kinase responsible for phosphorylation of the odorant receptor co-receptor (ORCO) at S289 that is required for normal odorant response kinetics of olfactory neurons. This is a significant step toward revealing the enzymology underlying the regulation of odorant response regulation in insects.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Proteína Quinase C/fisiologia , Animais , Dendritos/enzimologia , Relação Dose-Resposta a Droga , Proteínas de Drosophila/genética , Fenômenos Eletrofisiológicos , Deleção de Genes , Mutação/genética , Odorantes , Neurônios Receptores Olfatórios/enzimologia , Fosforilação , Proteína Quinase C/genética , Interferência de RNA , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
13.
Neurobiol Aging ; 101: 160-171, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618267

RESUMO

Entorhinal cortex (EC) is one of the first cerebral regions affected in the early phase of Alzheimer's disease (AD). Soluble forms of amyloid beta (Aß) impair synaptic transmission in experimental AD models. Protein kinase Mζ (PKMζ) is an atypical persistently active protein kinase C, known to maintain long term synaptic plasticity and memory, but its role in AD has not yet been described. We examined effect of PKMζ overexpression on the late long-term potentiation (L-LTP) in the dentate gyrus (DG) following EC amyloidopathy. Oligomeric Aß 1-42 (oAß) or vehicle was bilaterally microinjected into the EC of the male Wistar rats. After 1 week, 2 µL of lentiviral vector (~108 TU/mL) encoding PKMζ genome was injected into the DG. One week later, synaptic responses and the LTP persistence were assessed in DG of freely moving animals during 90 minutes to 7 days period. Novel object recognition, passive avoidance and spatial memories were also tested. In rats with EC amyloidopathy, LTP was induced with less amplitude compared to the control group, and extinguished after 24 h. PKMζ overexpression in DG augmented synaptic responses (PS-LTP amplitudes) and maintained LTP over 1 week. PKMζ ameliorated recognition and memory deficits in rats with EC amyloidopathy. Microinjection of PKMζ inhibitor, zeta inhibitory peptide, into the DG abolished the boosting effect of PKMζ on synaptic activity and memory performance. PKMζ-dependent pathway could be a potential therapeutic target to combat synaptic failure and memory deficit in the early phase of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Giro Denteado/metabolismo , Córtex Entorrinal/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Transtornos da Memória/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/genética , Animais , Células HEK293 , Humanos , Masculino , Memória , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Terapia de Alvo Molecular , Proteína Quinase C/fisiologia , Ratos Wistar
14.
Genesis ; 59(3): e23412, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547760

RESUMO

The atypical PKC (aPKC) subfamily constitutes PKCζ and PKCλ in mice, and both aPKC isoforms have been proposed to be involved in regulating various endothelial cell (EC) functions. However, the physiological function of aPKC in ECs during embryonic development has not been well understood. To address this question, we utilized Tie2-Cre to delete PKCλ alone (PKCλ-SKO) or both PKCλ and PKCζ (DKO) in ECs, and found that all DKO mice died at around the embryonic day 11.5 (E11.5), whereas a small proportion of PKCλ-SKO mice survived till birth. PKCλ-SKO embryos also exhibited less phenotypic severity than DKO embryos at E10.5 and E11.5, suggesting a potential compensatory role of PKCζ for PKCλ in embryonic ECs. We then focused on DKO embryos and investigated the effects of aPKC deficiency on embryonic vascular development. At E9.5, deletion of both aPKC isoforms reduced the diameters of vitelline artery and vein, and decreased branching from both vitelline vessels in yolk sac. Ablation of both aPKC isoforms also disrupted embryonic angiogenesis in head and trunk at the same stage, increasing apoptosis of both ECs and non-ECs. Taken together, our results demonstrated that aPKC in ECs plays an essential role in regulating cell apoptosis, angiogenesis, and embryonic survival.


Assuntos
Indutores da Angiogênese/metabolismo , Desenvolvimento Embrionário , Células Endoteliais/metabolismo , Proteína Quinase C/fisiologia , Saco Vitelino/embriologia , Saco Vitelino/metabolismo , Animais , Apoptose , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Gravidez , Deleção de Sequência
15.
Life Sci ; 270: 119037, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497738

RESUMO

AIMS: Skeletal muscle insulin resistance (SMIR) contributes to the metabolic syndrome. Mounting evidence has demonstrated that the second generation antipsychotic olanzapine causes SMIR. The present study sought to investigate the molecular mechanisms underlying olanzapine-induced SMIR. MAIN METHODS: Male rats were given olanzapine (5 mg/kg, by a gavage method) for consecutive eight weeks. Plasma glucose and insulin concentrations were determined enzymatically or by ELISA. Gene/protein expression was analyzed by Real-Time PCR, Western blot and/or immunohistochemistry. KEY FINDINGS: Olanzapine increased fasting plasma insulin concentration, and decreased glucose clearance during insulin tolerance test in rats. In skeletal muscle, it decreased protein expression of membrane glucose transporter (GLUT) 4, the ratio of membrane to total GLUT4, and total insulin receptor substrate 1 (IRS1). However, it increased protein phosphorylation of Ser307 in IRS1, Y607 in phosphoinositide 3-kinase p85α and Ser307 in AKT. These results indicate olanzapine-induced impairment of skeletal muscle insulin signaling. Mechanistically, olanzapine upregulated mRNA expression of TNFα, IL6 and IL1ß, and protein phosphorylation of both IκB kinase (IKK)α/ß and nuclear factor (NF)κB p65. Furthermore, it increased protein phosphorylation of Ser485/491 in AMPKα2, whereas it decreased AMPKα2 activity. More importantly, both Western blot and immunohistochemical analyses revealed that olanzapine increased protein phosphorylation of Ser744/748 in protein kinase D1 (PKD1). SIGNIFICANCE: The present results suggest that the PKD1-mediated inflammatory pathway is involved in olanzapine-induced impairment of skeletal muscle insulin signaling in rats. Our findings may go new insight into the mechanisms underlying olanzapine-induced SMIR.


Assuntos
Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Proteína Quinase C/metabolismo , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , NF-kappa B/metabolismo , Olanzapina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
16.
J Invest Dermatol ; 141(5): 1297-1307.e3, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33096083

RESUMO

Atopic dermatitis (AD) is a T helper (Th)2-biased disease with elevated expression of Th2 cytokines that responds to Th2 signaling blockade. TRIM32 is an E3 ubiquitin ligase with innate antiviral activity. In our previous studies, we showed that Trim32 null mice developed Th2-biased skin inflammation in response to imiquimod and associated a low level of TRIM32 with AD. In this study, we provide evidence that TRIM32 deficiency contributes to enhanced Th2 cell differentiation in vitro. Analysis of TRIM32-associated proteins from public databases identified protein kinase C (PKC)ζ as a TRIM32-associated protein that contributes to the regulation of Th2 signaling. We demonstrated that PKCζ was specifically ubiquitinated by TRIM32 and, further, that PKCζ stability tended to be increased in Th2 cells with a Trim32 null background. Furthermore, Prkcz null mice showed compromised AD-like phenotypes in the MC903 AD model. Consistently, a high PKCζ and low TRIM32 ratio was associated with CD4+ cells in AD human skin compared with those in healthy controls. Taken together, these findings suggest that TRIM32 functions as a regulator of PKCζ that controls the differentiation of Th2 cells important for AD pathogenesis.


Assuntos
Dermatite Atópica/etiologia , Proteína Quinase C/fisiologia , Células Th2/imunologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Células Th2/citologia , Ubiquitinação
17.
Obes Rev ; 22(3): e13145, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929844

RESUMO

Obesity is associated with ectopic accumulation of lipids, which is implicated in the development of insulin resistance, type 2 diabetes mellitus and cardiovascular disease. As the global prevalence of obesity continues to rise, it is becoming increasingly important to understand the underlying cellular mechanisms of this disease. Protein kinase D (PKD) is an intracellular signalling kinase with well characterized roles in intracellular vesicle transport and secretion, cancer cell proliferation and cardiac hypertrophy. However, emerging evidence also highlights PKD as a novel nutrient sensor. PKD activation is mediated by the accumulation of the lipid intermediate diacylglycerol, and PKD activity in the liver, heart and adipose tissue increases upon feeding. In obesity, PKD signalling is linked to reduced insulin signalling and dysfunction in adipose tissue, liver and heart, whilst in the pancreas, PKD is essential for the compensatory increase in glucose-stimulated insulin secretion from ß-cells during obesity. Collectively, these studies reveal aspects of PKD signalling that are involved in the tissue-specific responses to obesity. This review summarizes the emerging evidence suggesting that PKD plays an important role in regulating the adaptive response to the obese environment.


Assuntos
Nutrientes , Obesidade/enzimologia , Proteína Quinase C/fisiologia , Ingestão de Alimentos , Humanos
18.
Oncogene ; 40(4): 806-820, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262460

RESUMO

Uveal melanoma (UM) is a currently untreatable form of melanoma with a 50% mortality rate. Characterization of the essential signaling pathways driving this cancer is critical to develop target therapies. Activating mutations in the Gαq signaling pathway at the level of GNAQ, GNA11, or rarely CYSLTR2 or PLCß4 are considered alterations driving proliferation in UM and several other neoplastic disorders. Here, we systematically examined the oncogenic signaling output of various mutations recurrently identified in human tumors. We demonstrate that CYSLTR2 → GNAQ/11 → PLCß act in a linear signaling cascade that, via protein kinase C (PKC), activates in parallel the MAP-kinase and FAK/Yes-associated protein pathways. Using genetic ablation and pharmacological inhibition, we show that the PKC/RasGRP3/MAPK signaling branch is the essential component that drives the proliferation of UM. Only inhibition of the MAPK branch but not the FAK branch synergizes with inhibition of the proximal cascade, providing a blueprint for combination therapy. All oncogenic signaling could be extinguished by the novel GNAQ/11 inhibitor YM-254890, in all UM cells with driver mutation in the Gαq subunit or the upstream receptor. Our findings highlight the GNAQ/11 → PLCß â†’ PKC → MAPK pathway as the central signaling axis to be suppressed pharmacologically to treat for neoplastic disorders with Gαq pathway mutations.


Assuntos
Melanoma/genética , Oncogenes/fisiologia , Neoplasias Uveais/genética , Animais , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Camundongos , Mutação , Fosfolipase C beta/fisiologia , Proteína Quinase C/fisiologia , Receptores de Leucotrienos/fisiologia , Transdução de Sinais/fisiologia , Neoplasias Uveais/patologia
19.
Nat Rev Cancer ; 21(1): 51-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177705

RESUMO

The maturing mutational landscape of cancer genomes, the development and application of clinical interventions and evolving insights into tumour-associated functions reveal unexpected features of the protein kinase C (PKC) family of serine/threonine protein kinases. These advances include recent work showing gain or loss-of-function mutations relating to driver or bystander roles, how conformational constraints and plasticity impact this class of proteins and how emergent cancer-associated properties may offer opportunities for intervention. The profound impact of the tumour microenvironment, reflected in the efficacy of immune checkpoint interventions, further prompts to incorporate PKC family actions and interventions in this ecosystem, informed by insights into the control of stromal and immune cell functions. Drugging PKC isoforms has offered much promise, but when and how is not obvious.


Assuntos
Neoplasias/enzimologia , Proteína Quinase C/fisiologia , Animais , Humanos , Isoenzimas/fisiologia , Mutação , Fosforilação , Regiões Promotoras Genéticas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Microambiente Tumoral
20.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300872

RESUMO

The cortical polarity regulators PAR-6, PKC-3, and PAR-3 are essential for the polarization of a broad variety of cell types in multicellular animals. In C. elegans, the roles of the PAR proteins in embryonic development have been extensively studied, yet little is known about their functions during larval development. Using inducible protein degradation, we show that PAR-6 and PKC-3, but not PAR-3, are essential for postembryonic development. PAR-6 and PKC-3 are required in the epidermal epithelium for animal growth, molting, and the proper pattern of seam-cell divisions. Finally, we uncovered a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the localization of the microtubule organizer NOCA-1/Ninein, and defects in a noca-1 mutant are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through localization of NOCA-1/Ninein.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Epiderme/metabolismo , Microtúbulos/metabolismo , Proteína Quinase C/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Divisão Celular , Larva , Proteína Quinase C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...